Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Head Neck ; 45(9): 2344-2354, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37415457

RESUMO

BACKGROUND: To explore the patterns and risk factors of early thyroid dysfunction in nasopharyngeal carcinoma (NPC) patients within 1 year after intensity-modulated radiation therapy (IMRT). METHODS: Patients with NPC who received definitive IMRT between April 2016 and April 2020 were included. All patients had normal thyroid function before definitive IMRT. The chi-square test, Student's T-test, Mann-Whitney U test, Kaplan-Meier method, receiver operating characteristics curve, and Cox proportional hazard analysis were used for statistical analysis. RESULTS: A total of 132 NPC patients were identified. Of these patients, 56 (42.4%) had hypothyroidism and 17 (12.9%) had hyperthyroidism. The median time to hypothyroidism and hyperthyroidism was 9 months (range, 1-12 months) and 1 month (range, 1-6 months) after definitive IMRT, respectively. In patients with hypothyroidism, 41 (73.2%) had subclinical hypothyroidism and 15 (26.8%) had clinical hypothyroidism. In those with hyperthyroidism, 12 patients (70.6%) had subclinical hyperthyroidism, and five patients (29.4%) had clinical hyperthyroidism. Age, clinical stage, thyroid volume, and V45 were independent risk factors for early radiation-induced hypothyroidism within 1 year after IMRT. Patients aged <47 years, stage III/IV disease, or pre-irradiation thyroid volume < 14 cm3 had higher risks of developing hypothyroidism. CONCLUSION: Primary subclinical hypothyroidism was the most common subtype of early thyroid dysfunction in NPC patients within 1 year after IMRT. Age, clinical stage, thyroid volume, and V45 were independent risk factors for early radiation-induced hypothyroidism in NPC patients.


Assuntos
Hipertireoidismo , Hipotireoidismo , Neoplasias Nasofaríngeas , Radioterapia de Intensidade Modulada , Humanos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/complicações , Neoplasias Nasofaríngeas/patologia , Hipotireoidismo/epidemiologia , Hipotireoidismo/etiologia , Fatores de Risco , Radioterapia de Intensidade Modulada/efeitos adversos , Hipertireoidismo/epidemiologia , Hipertireoidismo/complicações , Dosagem Radioterapêutica
2.
Cell Signal ; 109: 110787, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37391048

RESUMO

BACKGROUND: Despite aggressive local and regional therapy, triple-negative breast cancer (TNBC) is characterized by an increased risk of locoregional recurrence. RNA-sequencing data has identified a large number of circRNAs in primary breast cancers, but the role of specific circRNAs in regulating the radiosensitivity of TNBC is not fully understood. This research aimed to investigate the function of circNCOR1 in the radiosensitivity of TNBC. METHODS: CircRNA high-throughput sequencing was conducted on two breast cancer MDA-MB-231 and BT549 cell lines after 6 Gy radiation. The relationship between circNCOR1, hsa-miR-638, and CDK2 was determined by RNA immunoprecipitation (RIP), FISH and luciferase assays. The proliferation and apoptosis of breast cancer cells were measured by CCK8, flow cytometry, colony formation assays, and western blot. RESULTS: Differential expression of circRNAs was closely related to the proliferation of breast cancer cells after irradiation. Overexpression of circNCOR1 facilitated the proliferation of MDA-MB-231 and BT549 cells and impaired the radiosensitivity of breast cancer cells. Additionally, circNCOR1 acted as a sponge for hsa-miR-638 to regulate the downstream target protein CDK2. Overexpression of hsa-miR-638 promoted apoptosis of breast cancer cells, while overexpression of CDK2 alleviated apoptosis and increased proliferation and clonogenicity. In vivo, overexpression of circNCOR1 partially reversed radiation-induced loosening of tumor structures and enhanced tumor cell proliferation. CONCLUSION: Our results demonstrated that circNCOR1 bounds to hsa-miR-638 and targets CDK2, thereby regulating the radiosensitivity of TNBC.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/genética , RNA Circular/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , Movimento Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo
3.
Front Oncol ; 11: 668066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34136400

RESUMO

PURPOSE: To investigate the influence of human papillomavirus (HPV) status on survival outcomes and treatment decisions for patients with de novo stage IV head and neck squamous cell cancers (HNSCC). METHODS: Patients initially diagnosed with de novo stage IVC HNSCC between 2010 and 2015 were identified from the Surveillance, Epidemiology, and End Results database. Cox multivariable analyses were performed to determine prognostic factors associated with head and neck cancers specific survival (HNCSS) and overall survival (OS). RESULTS: We identified 303 patients who received chemotherapy in this study, including 52.5% of them had HPV-positive disease. HPV-positive HNSCC had better HNCSS (P < 0.001) and OS (P < 0.001) compared to those with HPV-negative disease. The results of Cox multivariable analyses showed that HPV-negative status (P = 0.007), N3 stage (P = 0.004), bone metastases (P < 0.001), and lung metastases (P = 0.003) were associated with worse HNCSS. Similar results were found regarding the OS. The sensitivity analyses indicated that HPV-positive HNSCC patients who were treated with radiotherapy had better survival outcomes. However, no survival benefits were found in those with HPV-positive disease receiving surgery. For HPV-negative patients, no survival benefit was observed among those treated with radiotherapy or surgery. CONCLUSIONS: Approximately half of the stage IVC HNSCC patients are HPV-related. The presence of HPV infection appears to be strongly associated with the survival outcome in patients with de novo stage IV HNSCC. Determination of HPV status may help guide clinicians in prognostic assessment and treatment decision-making in this population.

4.
Neuropharmacology ; 131: 223-237, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29241654

RESUMO

Ginsenoside Rb1 has been demonstrated to protect dopaminergic (DA) neurons from death in vitro. However, the neuroprotective effects and underlying mechanism of Rb1 in treating Parkinson's disease (PD) remain uncharacterized. In this study, we explored the effects of Rb1 on the movement disorder and the underlying mechanisms based on the glutamatergic transmission and excitotoxicity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. Here, for the first time, we report that Rb1 treatment ameliorates motor deficits, prevents DA neuron death, and suppresses α-synuclein expression and astrogliosis in the MPTP mouse model of PD. Rb1 attenuates glutamate excitotoxicity by upregulating glutamate transporter expression and function, and modulating the nigrostriatal and cortico-nigral glutamatergic transmission pathways. Our results demonstrate that Rb1 increases glutamate transporter expression via nuclear translocation of nuclear factor-kappa B, regulates glutamate receptor expression and promotes synaptic protein expression. These results indicate that Rb1 suppresses glutamate excitotoxicity and modulates synaptic transmission to improve the impairments in motor functions of the MPTP model of PD, suggesting that Rb1 may serve as a potential therapeutic agent for PD.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Antiparkinsonianos/farmacologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Ginsenosídeos/farmacologia , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Gliose/tratamento farmacológico , Gliose/metabolismo , Gliose/patologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia , Masculino , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Receptores de AMPA/metabolismo , Técnicas de Cultura de Tecidos
5.
Biochem Biophys Res Commun ; 490(3): 1125-1131, 2017 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-28676394

RESUMO

TWIK-Related K+ channels (TREK), including TREK-1 and TREK-2, belong to the TREK/TRAAK subclass of two-pore domain K+ (K2P) family. The important functions of transmembrane segment 4 (M4)-glycine hinge in TREK channel gating have been characterized, but the roles of M2-hinge (the equivalent residue of M4-hinge) remain unclear. Here, by characterizing the macroscopic currents, subcellular localization and gating properties of their M2-hinge mutants (G166A for TREK-1 and G196A for TREK-2), we investigated the functions of M2-hinge. G166A displayed decreased whole-cell currents, whereas no current was produced by G196A. Subcellular analysis indicated that both mutants were aggregated near the perinuclear region, and most of them were retented within the endoplasmic reticulum (ER). Next, to explore the roles of M2-hinge in the gating mechanism, we tested the responses of the related M2-hinge mutants to 2-Aminoethoxydiphenyl borate (2-APB) and extracellular pH alteration (ΔpHo). TREK-1mut7-G166A displayed reduced sensitivity to 2-APB activation, but similar sensitivity to ΔpHo, when compared with TREK-1mut7. WT-ΔpCt, a TREK-2 tandom dimer, was used to assess the function of M2-hinge in the cis-type gating of TREK-2. The sensitivities of G196A-ΔpCt to both 2-APB and ΔpHo decreased compared with WT-ΔpCt. Taken together, our results reveal that the M2-hinge of TREK channels control their macroscopic current, subcellular localization and gating process.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/metabolismo , Sequência de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Mutação Puntual , Canais de Potássio de Domínios Poros em Tandem/análise , Canais de Potássio de Domínios Poros em Tandem/genética , Alinhamento de Sequência , Xenopus
6.
Front Cell Neurosci ; 10: 127, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27242438

RESUMO

In response to diverse stimuli, two-pore-domain potassium channel TREK-2 regulates cellular excitability, and hence plays a key role in mediating neuropathic pain, mood disorders and ischemia through. Although more and more input modalities are found to achieve their modulations via acting on the channel, the potential role of subunit interaction in these modulations remains to be explored. In the current study, the deletion (lack of proximal C-terminus, ΔpCt) or point mutation (G312A) was introduced into TREK-2 subunits to limit K(+) conductance and used to report subunit stoichiometry. The constructs were then combined with wild type (WT) subunit to produce concatenated dimers with defined composition, and the gating kinetics of these channels to 2-Aminoethoxydiphenyl borate (2-APB) and extracellular pH (pHo) were characterized. Our results show that combination of WT and ΔpCt/G312A subunits reserves similar gating properties to that of WT dimmers, suggesting that the WT subunit exerts dominant and positive effects on the mutated one, and thus the two subunits controls channel gating via a concerted cooperative manner. Further introduction of ΔpCt into the latter subunit of heterodimeric channel G312A-WT or G312A-G312A attenuated their sensitivity to 2-APB and pHo alkalization, implicating that these signals were transduced by a cis-type mechanism. Together, our findings elucidate the mechanisms for how the two subunits control the pore gating of TREK-2, in which both intersubunit concerted cooperative and cis-type manners modulate the allosteric regulations induced by 2-APB and pHo alkalization.

7.
Sci Rep ; 6: 21248, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26879043

RESUMO

TREK-2, a member of two-pore-domain potassium channel family, regulates cellular excitability in response to diverse stimuli. However, how such stimuli control channel function remains unclear. Here, by characterizing the responses of cytosolic proximal C-terminus deletant (ΔpCt) and transmembrane segment 4 (M4)-glycine hinge mutant (G312A) to 2-Aminoethoxydiphenyl borate (2-APB), an activator of TREK-2, we show that the transduction initiated from pCt domain is allosterically coupled with the conformation of selectivity filter (SF) via the movements of M4, without depending on the original status of SF. Moreover, ΔpCt and G312A also exhibited blunted responses to extracellular alkalization, a model to induce SF conformational transition. These results suggest that the coupling between pCt domain and SF is bidirectional, and M4 movements are involved in both processes. Further mechanistic exploration reveals that the function of Phe316, a residue close to the C-terminus of M4, is associated with such communications. However, unlike TREK-2, M4-hinge of TREK-1 only controls the transmission from pCt to SF, rather than SF conformational changes triggered by pHo changes. Together, our findings uncover the unique gating properties of TREK-2, and elucidate the mechanisms for how the extracellular and intracellular stimuli harness the pore gating allosterically.


Assuntos
Ativação do Canal Iônico , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Domínios e Motivos de Interação entre Proteínas , Regulação Alostérica , Animais , Glicina/química , Humanos , Canais de Potássio de Domínios Poros em Tandem/química , Conformação Proteica , Isoformas de Proteínas
8.
J. physiol. biochem ; 71(4): 601-610, dic. 2015.
Artigo em Inglês | IBECS | ID: ibc-145714

RESUMO

TREK-2 (TWIK-related K+ channel-2), a member of two-pore domain potassium (K2P) channel family, tunes cellular excitability via conducting leak or background currents. In TREK-2, the isoforms generated by alternative translation initiation (ATI) mechanism exhibit large divergence in unitary conductance, but similar in selectivity to K+. Up to now, the structural basis for this similarity in ion selectivity is unknown. Here, we report that externally applied Ba2+ inhibits the currents of TREK-2 in a concentration- and time-dependent manner. The blocking effect is blunted by elevated extracellular K+ or mutation of S4 K+ binding site, which suggests that the inhibitory mechanism of Ba2+ is due to its competitive docking properties within the selectivity filter (SF). Next, we demonstrate that all the ATI isoforms exhibit analogous behaviors upon the application of Ba2+ and alteration of extracellular pH (pHo), which acts on the outer position of the SF. These results strongly support the notion that all the ATI isoforms of TREK-2 possess resembled SF conformation in S4 site and the position defined by pHo, which implicates that neither the role of N-terminus (Nt) nor the unitary conductance is associated with SF conformation. Our findings might help to understand the detail gating mechanism of TREK-2 and K2P channels


Assuntos
Isoformas de Proteínas/análise , Iniciação Traducional da Cadeia Peptídica/fisiologia , Canais de Potássio Shaw/fisiologia
9.
J Physiol Biochem ; 71(4): 601-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26271386

RESUMO

TREK-2 (TWIK-related K(+) channel-2), a member of two-pore domain potassium (K2P) channel family, tunes cellular excitability via conducting leak or background currents. In TREK-2, the isoforms generated by alternative translation initiation (ATI) mechanism exhibit large divergence in unitary conductance, but similar in selectivity to K(+). Up to now, the structural basis for this similarity in ion selectivity is unknown. Here, we report that externally applied Ba(2+) inhibits the currents of TREK-2 in a concentration- and time-dependent manner. The blocking effect is blunted by elevated extracellular K(+) or mutation of S4 K(+) binding site, which suggests that the inhibitory mechanism of Ba(2+) is due to its competitive docking properties within the selectivity filter (SF). Next, we demonstrate that all the ATI isoforms exhibit analogous behaviors upon the application of Ba(2+) and alteration of extracellular pH (pHo), which acts on the outer position of the SF. These results strongly support the notion that all the ATI isoforms of TREK-2 possess resembled SF conformation in S4 site and the position defined by pHo, which implicates that neither the role of N-terminus (Nt) nor the unitary conductance is associated with SF conformation. Our findings might help to understand the detail gating mechanism of TREK-2 and K2P channels.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/fisiologia , Sequência de Aminoácidos , Animais , Compostos de Bário/farmacologia , Sítios de Ligação , Células Cultivadas , Cloretos/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Potenciais da Membrana , Dados de Sequência Molecular , Iniciação Traducional da Cadeia Peptídica , Potássio/farmacologia , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/química , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína , Xenopus laevis
10.
J. physiol. biochem ; 70(1): 185-191, mar. 2014.
Artigo em Inglês | IBECS | ID: ibc-121617

RESUMO

Mas-related G protein-coupled receptor D (MrgD) is expressed almost exclusively in nociceptive primary sensory neurons and the neurons located in stratum granulosum of skin. More and more evidence suggest that MrgD plays an important role in pain sensation and/or transduction. Recent studies have demonstrated that the receptor is also involved in itch sensation in both mouse and human. In the present study, we identified a robust inward current in MrgD-expressing Xenopusoocytes by using â-alanine, a putative ligand of MrgD. The currents were sensitive to inhibitor of Ca2+-activated chloride channels (CaCCs) and intracellular Ca2+ chelator, suggesting they were produced by endogenous CaCCs. Furthermore, it was demonstrated that upon the application of phospholipase C (PLC) inhibitor, or antisense oligonucleotides of inositol trisphosphate receptor (IP3R), the â-alanine-induced currents were dramatically depressed. However, protein kinase C inhibitor did not display any visible effect on CaCC currents. In summary, our data suggest that the activation of MrgD promotes the open of endogenous CaCCs via Gq-PLC-IP3-Ca2+ pathway. The current findings reveal the functional coupling between MrgD and CaCCs in Xenopus oocytes and also provide a facile model to assay the activity of MrgD


Assuntos
Animais , Xenopus , Dor/fisiopatologia , Bloqueadores dos Canais de Cálcio/farmacocinética , Substâncias Protetoras/farmacocinética , /métodos , Canais de Cloreto/antagonistas & inibidores , Receptores de Superfície Celular/biossíntese
11.
J Physiol Biochem ; 70(1): 185-91, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24078284

RESUMO

Mas-related G protein-coupled receptor D (MrgD) is expressed almost exclusively in nociceptive primary sensory neurons and the neurons located in stratum granulosum of skin. More and more evidence suggest that MrgD plays an important role in pain sensation and/or transduction. Recent studies have demonstrated that the receptor is also involved in itch sensation in both mouse and human. In the present study, we identified a robust inward current in MrgD-expressing Xenopus oocytes by using ß-alanine, a putative ligand of MrgD. The currents were sensitive to inhibitor of Ca(2+)-activated chloride channels (CaCCs) and intracellular Ca(2+) chelator, suggesting they were produced by endogenous CaCCs. Furthermore, it was demonstrated that upon the application of phospholipase C (PLC) inhibitor, or antisense oligonucleotides of inositol trisphosphate receptor (IP3R), the ß-alanine-induced currents were dramatically depressed. However, protein kinase C inhibitor did not display any visible effect on CaCC currents. In summary, our data suggest that the activation of MrgD promotes the open of endogenous CaCCs via G(q)-PLC-IP3-Ca(2+) pathway. The current findings reveal the functional coupling between MrgD and CaCCs in Xenopus oocytes and also provide a facile model to assay the activity of MrgD.


Assuntos
Canais de Cloreto/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Oócitos/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Sinalização do Cálcio , Células Cultivadas , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciais da Membrana , Ratos , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis , beta-Alanina/farmacologia , beta-Alanina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...